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In this two part paper, the use of Box-Jenkins models for modeling
and forecasting fisheries is explored. Part I explores in some detail
the process of identifying and estimating a Box-Jenkins model, and how
forecasts are made and updated. A model developed to forecast skipjack

tuna, Katsuwonus pelamis, catches in Hawaii 1s used to 1llustrate the

methodology. In part II, the strengths and weaknesses of models

developed to forecast yellowfin tuna, Thunnus albacares, catches in

the eastern Pacific and salmon runs in the Skeena River are discussed.

Forecasting techniques have improved greatly in the last few years,
and research in fisheries management generally has not kept up with
these advances. There are good reasons for considering forecasting
models, TFirstly, the néeds of good forecasts are different from those
of the usual stock assessment techniques. These latter techniques
primarily are aimed at determining the (equilibrium) status or health of
the stock. While the fit to the observed data used to estimate the stock
assessment models vary from case to case, these models on the whole do
not successfully predict the actual history of the stock for the next
few time periods of interest.

A second reason for consideringrforecasting models is the weak
statistical basis underlying both the general production model (Fox
1970, 1971, 1975) and such models as the Ricker spawner-recruit curve
(Ricker 1954). Each of these techniques scales the dependent variable
(catch or recrults) by the independent variable (effort or spawners),
and then performs a least squares fit against a function of the

independent variable. Several authors (Chayes 1949; Eberhardt 1970;
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Atchley et al. 1976) have demonstrated that this procedure can intreduce
severe bias into the estimation procedure, so that even two uncorrelated
random variables would appear to have a significant relationship. The
general production model often uses a function not of effort, but of a
welghted sum of the effort over the past several years. After scaling,
effort is then estimated as a lagged variable of itself. Johnston (1972)
shows that using ordinary least squares procedures in this instance
again biases the estimated "goodness of fit."

Most importantly, however, is the fact that most fishery data are
highly autocorrelated through time: An examination of the residuals in
Fox (1971, Fig. 3B} clearly exhibit autoregressive behavior. The same
can be said for most residuals from spawner-recruit curves. Granger
and Newbold (1977) and Newbold and Davies (1978) have termed using
ordinary least squares in these instances "spurious regression" and
demonstrate how the estimated fit of the model is biased upward when the
errors are misspecified.

Box-Jenkins models and other forecasting techniques are usually
specifically designed to estimate parameters when the data are autocorrelated,
including seasonal data. Moreover, the models are stochastic, rather
than deterministic, reflecting the variability observed in most fisheries.
Our preference for Box-Jenkins models over other forecasting techniques
is more practical than anything else, Box-Jenkins models are well
documented (see for example Anderson 1975; Box and Jenkins 1976; Granger
and Newbold 1977), they are empirically constructed from the data rather
than force fitted, and there are several packages available to perform

the necessary computations. The results presented here were calculated
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using a package originally developed by David Pack at Ohio State

University; and now available through Automated Forecasting Systems.

II. THE DATA AND THE UNDERLYING MODEL

The data to be analyzed are landings of skipjack tuna by approxi-
mately 12 boats on Oahu 1964 through 1978, Each boat rarely stays out
more than a day or two, and the raw data consist of the daily landings,
broken down by boat, and for four size classes, large, medium, small,
and extra small. For purposes of analysis, the data have been aggregated
into monthly totals, with the total number of fishing trips used as the
measure of fishing effort. The monthly catch and effort for the period
1964~78 are plotted in Figures 1 and 2.

There are several causes for the observed seasonal variability.
Firstly, the tuna are only available seascnally in large numbers.
Secondly, price considerations, particularly around Christmas and New
Years when there 1s large demand, tend to spur fishing even when avail-
ability is low. Thirdly, with only 12 boats fishing, if 1 or 2 boats
are not able to fish for a few weeks, the catch will drop sharply.
Finally, environmental factors, particularly weather (such as bad seas)
will affect the landings since the boats are unable to fish.

Folklore in Hawaii has it that the catch remains pretty much the
same each year, no matter how many boats fish. Comitini {1977) examined
the fishery using dummy variables and ordinary least squares to estimate
a Cobbs-Douglas production fuction. He concludes among other things

that natural fluctuations in resource availability are significant, but
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does not include them in his analysis, nor does he provide a means for
forecasting future catch. The National Marine Fisheries Service, using
a regression model based on the previous year's catch, water temperature,
and salinity at the start of the year make yearly predictions that have
been mixed in accuracy. Monthly forecasts have been thought to be
impractible or impossible due to the variability in the data.

A feature of the data not examined in this paper is that prior to
1973, the catch of the large tuna and the total catch "track" together
closely. After 1973 this is not so. There are several possible
explanations for this, including the mercury scare in the early 1970's
for large tuna, increased foreign fishing around Hawaii, and increased
catches elsewhere in the Pacific. While this change in size composition
does not affect our modeling of the total catch (as will be seen), 1t is
certainly a trend worth analyzing in greater detail if more accurate
forecasts are to be obtained.

Box-Jenkins models are based on autoregressive-integrated-moving-
average models, or ARIMA models. These are linear, stochastic models
that can describe fairly complex behavior. Unlike Parrish and MacCall
(1978) say, who have gone to more highly nonlinear equations to model
the fluctuations in fishery data, the approach here is to use less
complex, linear models.

The modeling is based on the properties of stationary time series.

A time series X, is stationary if it has mean zero, and if the covariance
between events X X _o depends only on s and not on t. Many series are
stationary after removing the estimated (observed) mean. Others have

to be differenced in order to achieve stationary. It is convenient to
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use the backshift operator Bjxt = xt-j when describing lags or
differencing. The initial step then is to transform and difference the
data as necessary to achieve stationarity. Given the new series
z, = (l-—Bd)xt, a mixture of autoregressive and moving average models
are sought. Autoregressive models are lags on the past history of the
time series:

z, =9 +9

e =Pzt e H 02 TR

or equivalently:

(1-9,8-0,8°~ ... - 8Bz =a

and moving average models are lags on the past noise or error as

a
q t-q
or:

= (1-8 B-0. B2~ - g gd
(1 elB 0,B ‘e BqB )at

Z¢ 2
A model that has both moving average and autoregressive parameters is a

mixed autoregressive moving average model. The general representation

is:

LA - Pyer_wdve = (1o _a a2 _ q
(l—-ﬁlB GZB I GPB y{(1-B )xt Q 613 823 . qu )at.
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III. MODEL IDENTIFICATION

The first step in the modeling process is to use properties of the
data to tentatively identify a model. In Box-Jenkins techniques, even
1f a multivariate model (i.e., a model based on catch and effort) is the
ultimate goal, univariate models of each series are first constructed.
Often the univariate model produces forecasts that are almost as
accurate as the multivariate model forecast.

Our procedure was to fit initially a model from the data for
January 1964 through July 1977, and then forecast to December 1978. If
the forecasts seemed reasonable, the parameters would be reestimated
using the data for January 1964 through December 1978, and then monthly
forecasts for 1979 would be made. (To make clear the feedback nature of
identification, estimation,and checking in Box-Jenkins models, results
from models fixed to 163 mo and 180 mo of data are intermingled, but
clearly labeled.) 1In both cases, the forecasts are of data points not
used in identifying the model or estimating the parameters.

A tentative model can be identified by estimating the regular and
partial autocorrelation functions for each series. These are shown in
Figures 3-4. Significant is the undamped sinusoidal behavior of each,
with a period of 12 mo. Failure of both the regular and partial
autocorrelation functions to go to zero is a sign of a nonstaticmary
series, and the need for differencing. In this instance, a seascnal
model is suggested, so that twelfth differences were taken, that 1s

~ 12
z, = (1-B )xt.
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The estimated regular and partial autocorrelation functions for
the differenced catch and effort series are given in Tables 1 and 2.
There are several ways to proceed from here, but suspecting a multiplicative
seasonal model, appendix 9.1 in Boxiggnkins (1976) was consulted. This
lists special characteristics of the autocovariances of the multiplicative

seasonal models most often encountered. In particular, a seasonal model

with period s of the form:

_ _ _ 2 N s _ 2s
= (1-9.B BZB Yy (1 elB 6.B )at (3.1)

2 1 2

has the special characteristics:

ps—2 ps+2

Pgo1 Psyy

Prg-2 = Pogy2

Prg-1 ™ Pogn1

and should have a significant autocorrelation at lag s. For s = 12,
Tables 1,2 Tables 1 and 2 both show a highly significant autocorrelation at lag 12.

Moreover, the implied equalities for effort are: -0.08 = -0.08;

-0.20 = -0.18; 0.05 = -0.07; 0.04 = 0.00. The implied equalities for

catch are: -0.12 = -0.15; -0.21 = =0.21; -0.08 = -0.06; -0.08 = -0.06.

As these estimated values come close to the theoretical properties of

model (3.1), this was accepted as a tentative model for the two time-

series.
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IV. ESTIMATION AND CHECKING

There are twe methods generally used to estimate parameters for Box-
Jenkins parameters. The first involves maximizing the conditional
likelihood, the second the unconditional. In some packages, the program
will request if it is desired to suppress backforecasting. Backforecasting
is used in the unconditional estimation. When backforecasting is used,
the algorithm is more sensitive to starting values and takes longer to
execute. The estimates, however, usually have a smaller residual sum of
squares than when backforecasting is suppressed. A procedure often used
is to first estimate the parameters suppressing backforecasting, and then
use these estimates as starting values for the unconditional estimation.

The estimate for both catch and effort for model (3.1) are given in
Tables 3 and 4, There are two major techniques for checking for model
inadequacy. The first is to calculate the estimated regular and partial
autocorrelations of the model residuals, and the second is to overfit the
model. The estimated regular and partial autocorrelations for the residuals
from each series when backforecasting 1s used are given in Tables 5 and 6.
For the effort series, there is no sign of lack of fit. For the catch
series, however, additional terms of lag for three and four are suggested.

An overspecified model:

2 3 4 12
z, = (1-9 B-GZB - 0,B _BAB) (l—OlB )

1 3

was fit to both time series. The results are summarized in Tables 7 and 8.
The regular and partial autocorrelation functions (not shown) show no sign

of additional lags or trend. Box and Jenkins (1976, p. 291) give a
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portmanteau chi square statistic to test whether the residual serles can
adequately be described as white noise. The test statistic, given in

Tables 7 and 8, suggest no reason to question the models' adequacy.

V. TRANSFER FUNCTION MODELS
If both the catch time series, say Voo and the effort time series,

say x_, have been suitably transformed so that the resulting series are

t’

stationary, a transfer function can be estimated of the form:

2 r 2 s
(1-8,B-8,8" - ... -6 B)x_ = (wy=w;B~w,B" ~...-w By, . +n,

1 2
where nt is not assumed to be white noise, but itself can be modeled as an
autoregressive~moving average process of a,.

The procedure for identifying and estimating a transfer function model
are similar to those for the univariate model, except that attention is
focused on the estimated cross-correlation function between the "prewhitened"
catch and effort series. Series are prewhitened if they are reduced to
the residuals left from a given model. In this instance, both series are
prevhitened by the univariate model for effort estimated in sectiom IV.

The estimated correlation function, impulse response function, and residual
nolse autocorrelation function are given in Table 9. The estimated

autocorrelation function for the noise is similar to the original univariate

autocorrelations, suggesting a noise model of the form:

n, = (L-90.B-0 g2_0 p>

4 12
1 5 3 -B&B) (1-@113 )at (5.1)
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Based on guidelines in Box and Jenkins (1977, p. 386~388) and knowledge of

the fishery, two models were hypothesized:
12 12
(1-B3"Ty, = (wy) L-BDx +n, (5.2)

12, 2 12
)y, = (Wy-wB-w,B)(1-B)x +n_  (5.3)

] 2
and: (l-GlB-GZB)(l'—B» N

Tables 10 and 11 summarize the estimates when backforecasting is used
in estimating the parameters for (5.2) and (5.3). The chl square statistics
show no reason to suspect model inadequacy. The residuals show no

1
significant cross-correlation with total catch, when /¥180 (180
observations in the series) is used as a rough standard error. The residual
autocorrelation function shows spikes around lag 15 that are higher than
would be desired, but overall the fit is reasonable, and the model residuals

could reasonably be modeled as white noise.

VI. DISCUSSION AND FORECASTS
The three models that were fit to forecast the total monthly skipjack
tuna catch can be better interpreted when written in difference equation

form. The univariate model becomes:

Yo = Yoqp * (@, +0.538a,_, +0.438a _,+0.412a _,+0.309a )

~ (0.996a __,,+0.535a ,,+0.436a ;,+0.410a ,;+0.308a

13 14 15 =16

(6.1)
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That is, the catch this month is equal to the catch the same month
last year, plus the difference between a weighted sum of this year's
forecasting errors compared to last year's. The model checks to see how
far off the mean trend this year has been compared to last year, and
adjusts the predicted catch according. The model that has been derived is
completely consistent with the local folklore, only it gives a method to
adjust the forecast to include the year to year variability. The other
expected result is that the residual mean square is large (115, 170),
despite the fact that the residuals have been reduced to white noise. The
model was constructed from the data, but is consistent with the experience
and perceived knowledge of people familiar with the fishery.

This impression of a yearly cycle with variability is reinforced
when examining the polynomial representation of the model (3.1). The
value of © 1s nearly one. Thus, the term (l-Blz) appears on both sides
of the equation, and can be cancelled. Abraham and Box (1978) show that this
is sufficient reason to suspect a deterministic cosine function trend.

This approach is not used since the deterministic trend would not
self-correct to the past errors in the forecasts.

The two multivariate medels are:
Ye = 8.003xt-+(yt_lz-8.003xt)

+ (a +0.489a | +0.326a,_,+0.149a _4+0.175a, ;) (6.2)

1 2 3

- (0.996at~12-+0.487at_ 3-+0.3253t_ +0.1483t_ +0.174at_16)

1 14 15

and
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y, = 8.186x _+(0.866y _, ~6.742x ;) - (0.708y _,-7.313x 4

1

+ (¥, p-8-186% _1,) +(0.866y, ;5 -6.752x, 1) - (0.708y _,, - 7.313x%,

£-12 t-13
+ (at4-0.470at_l4~0.332at_2-F0.172at_3-+0.217at_a) (6.3)
- (0.995a _,,+0.468a, ,4+0.33la _,, +0.171a ,5+0.216 a,_1g)

The model (6.12) predicts that catch this month is a function of the
relative catch and effort in the same month last year, corrected by the
relative forecasting errors the last 4 mo this year less the same
errors the year before. The model (6.3) is similar, except that the catch
and effort for the 4 mo previous, both this year and last, are used
in the prediction.

Forecasts can be made using any of the three models by substituting
expected values for unknown values. If T is the base period of the forecast,
and the last observed period, then for £>0, the expectation of Yy is zero.
The expected effort series can be generated by the univariate effort model,
and for each period T+ %, the predicted catch and effort are used in the
forecast as the expected value.

Table 12 Monthly forecasts for 1979 are given in Table 12. It can be seen that
the models perform adequately. January is the worst month, but January 1979
had unusually severe weather and relatively little fishing. The forecasts
rise a little too quickly for April, but by May the forecasts are fairly

accurate.
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More importantly, a desirable feature of any forecast is an ability te
constant self-correct to the observed forecasting errors. Table 13 gives
the same three forecasts after the January-April 1979 data has been included
in the data set. The updated forecasts lower the May estimate, since
January-February were bad months, but increase the predicted catch in late
summer. Experience with each of the models is that while there may be
considerable month to month error, the forecasts quickly self-correct.
Over a 12-15 mo period, the forecasting errors can be expected to cancel
each other out, providing a relatively accurate forecast for the year.
The updated forecasts predict a yearly catch of about 3,300 metric tons
(MT), with the three forecasts differing less than 100 MT. This is almost
1,000 MT better than 1978. The earlier catch record, plus observations
from the fishermen, would seem to support this optimistic forecast.

Improved forecasts might be expected if effective trips per month is
used as the input series instead of total trips per month. Also, breaking
the catch into size classes may improve the forecast, since the dynamics
of the size classes differ, and the total catch dynamics is a mixing of
each of these series. These possibilities will be reported on in future

papers.

VII. SUMMARY
Box-Jenkins models have been proposed as an alternate model for fore-
casting fishery data. ARIMA models provide maximum likelihood estimators
that are not biased when the data is seasonal and autocorrelated, and when

a viable 1s lagged on itself. Techniques are explored which allow the



14
model to be constructed from the data up, rather than from questionable
theoretical models. The procedure is illustrated on skipjack tuna catches
in Hawaii, which traditionally has been considered too variable to forecast
on a monthly basis in a reasonable manner.

Part II of this paper will examine models of the yellowfin tuna catch
in the Pacific and salmon runs on the Skeena River. In part II, less
emphasis will be given to how to identify the model, and more emphasis will
be given to the problems of forecasting complex systems with relatively
short time series. This leads to large estimated standard errors for
parameters with values much different from zero. Alternate methods of
estimating the transfer function between catch and effort will also be

examined.
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Table 3.--Parameter estimates for effort model

- 2 24
z, = (1 - BlB 62B )y (1 -0 - 923 )at .
Estimate
suppressing Standard Estimate using Standard

Parameter backforecasting error backforecasting error
Gl -0.38349 0.07942 ~0.44756 0.07886
82 -0.11326 0.07996 -0.12795 0.07911
Ol 0.5894 0.08122 0.99493 0.00650
92 0.00069 0.08609 - -
x? statistic 26.894 with 44 d.f. 37.319 with 45 d.f.

on residuals
Residual 1,018.60 755.270

mean square
Residual 31.915 27.482

standard error
Residual mean 1.629 0.5338

Based on 180 observations.



Table 4.--Parameter estimates for catch model

2 12 24
z, = 1 - els - 92B ) (L - GlB - OZB ) a, -
Estimate
suppressing Standard

Parameter backforecasting error
81 =0. 54100 0.08190
62 -0.22745 0.08235
Ol 0.75314 0.08718
62 0.05184 0.09256
x* statistic 27.470 with 43 d.f.

on residuals
Residual 165410

mean square
Residual 406.71

standard error
Residual mean 17.506

Based on 163 observations.
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Table 7.--Parameter estimates for effort model

12 _ 2 3 4 5 12
(1-B )xt— (1—813—823 -B3B -04 —GSB ) (1-618 )at.
Estimate
suppressing Standard Estimate using Standard

Parameter backforecasting error backforecasting error
81 -0.36746 0.08004 -0.43862 0.07930
82 -0.14976 0.08412 -0.18144 0.08590
83 -0.16111 0.08458 -0.15377 0.08617
84 -0.17096 0.08454 ~0.16298 0.08593
85 -0.11547 0.08089 -0.17291 0.07998
Ol 0.59065 0.06431 0.99483 0.00033
x? statistic 20.696 with 42 d.f. 27.494 with 42 d.f.

on residuals
Residual 1,000.40 752.67

mean square
Residual 31.629 27.435

standard error
Residual mean 0.82151 0.35175

Based on 180 observations.



Table 8.--Parameter estimates for the catch model

2

3

4 12

12 5
(1 -877) X, = (1 - GlB - B2B - 63B - 843 -85B y (1 - OlB )at
Estimate
suppressing Standard Estimate using Standard
Parameter backforecasting error backforecasting error
81 -0.55368 0.07972 -0.53771 0.07462
82 -0.35882 0.08989 -0.43825 0.07543
83 -0.33817 0.09056 -0.41197 0.01144
64 -0.24282 0.09012 -0.30909 0.07479
85 -0.12294 0.07994 -0.14974 0.07440
Gl 0.76951 0.05062 0.99585 0.00825
XZ statistic 15.092 with 42 d.f. 20.384 with 42 d.f.
on residuals
Residual 143240 115170
mean square
Residual 378.47 339.37
standard error
Residual mean 2.1150 3.3299

Based on 180 observations.
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Table 10.--Parameter estimates for transfer model

12 _ 12 2 3 4 12
{(1-B )yt = mo(l-B )xt + (1—81B-82}3 —833 -64B ) (l—OlB )at
Estimate
suppressing Standard Estimate using Standard

Parameter backforecasting error backforecasting error
W 7.5989 0.69403 8.0003 0.83561
81 -0.47621 0.07993 -0.48894 0.07851
92 -0.32874 0.08734 -0.32633 0.08541
83 ~0.17034 0.08803 -0.14853 0.08666
64 -0.20033 0.07905 -0.17506 0.07822
Ol 0.83384 0.05271 0.99587 0.00707
x? statistic 34.953 with 43 d.f. 32.018 on 43 d.f.

on residuals
Residual 83,323 71,300

mean square
Residual 288.66 267.02

standard error
Residual mean -15.152 0.18650

Based on 180 observations



Table 11.--Parameter estimates for transfer model

2 12 2 12
(1 - GlB - GZB y (L-B )xt = (w0 - wlB - sz ) (1 -8B )xt

2 3 4 12
+ (1 - GlB - BZB - g,B7 - 84B )y (1 - OlB )at.

3
Estimate
suppressing Standard Estimate using Standard

Parameter backforecasting error backforecasting error
61 0.01286 0,30389 0.86672 0.22308
62 0.88121 0.28641 -0.70763 0.21659
Wy 7.3488 0.73352 B.1855 0.82832
Wy -1.3011 2.16847 6.7421 1.71214
Wy 6.8509 2.34577 -7.3133 1.58459
81 -0.49924 0.08302 -0.46980 0.08013
62 -0.29495 0.09102 -0.33234 0.08870
83 -0.16384 0.09191 -0,17199 0.09012
84 -0.13639 0.08352 -0.21746 0.08098
Ol 0.83311 0.05511 0.99543 0.00623
x? statistic 33.067 with 43 d.f. 38.906 with 43 d.£.

on residual
Residual 85,673 69,066

mean square
Residual 292.70 262.80

standard error
Residual mean ~1.9979 -2.4666

Based on 180 observations
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Figure l.--Level of skipjack tuna catch by month, 1964-78.



m‘I\T. L T L T T 1 1T

EFFORT ( NUMBER OF TRIPS]

af-—
P .
n}t
|l
k-
2z
-
ol
»l
wl
ol
zf
ofb———
.
"
4o
f
=z}
I
b
ol
wnl
o
z
=}

ol L1 sols1 ! T J S T S R S A R MY
JFMAMJJASONDJFMAMJU ASONDJFMAMJJASON
MONTHS

Figure 2.--Number of fishing trips per month, 1964-78.
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Figure 3.--Estimated total catch autocorrelation function.
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Figure 4.--Estimated effort autocorrelation function.




